THERMAZONE ALU

Aislamiento térmico de PIR para cubiertas metálicas

DESCRIPCIÓN DEL PRODUCTO

El Thermazone ALU Sp son unos paneles rígidos de espuma de poliisocianurato (PIR) revestida por las dos caras con un complejo multicapa de aluminio, certificado ante fuego por FM Approvals como Clase 1 (roof deck assemblies - según FM 4470).

Aislamiento térmico de cubiertas, como soporte de impermeabilización (cubierta convencional), especialmente para cubiertas tipo deck.

Dimensiones

2400 x 1200 mm*

*Otras dimensiones consultar al departamento técnico.

Densidad

(peso volumétrico núcleo) ± 32 kg/m³

Espesores (mm)	30	35	40	50	55	60	70	80	85	90	95	100
Resistencia térmica (m²·K/W)	1,30	1,50	1,75	2,20	2,40	2,65	3,05	3,50	3,75	3,95	4,20	4,40

Espesores (mm)	110	115	120	130	135	140	150	160
Resistencia térmica (m²·K/W)	4,85	5,05	5,30	5,75	5,95	6,15	6,60	7,05

VENTAJAS

- Menor espesor de aislamiento gracias al bajo coeficiente de conductividad térmica de la espuma poliisocianurato y al recubrimiento multicapa estanco.
- Elevada resistencia a la compresión.
- Prácticamente nula absorción de agua gracias a la estructura de celda cerrada del polímero.
- Paneles de gran rigidez y poco peso.
- Entre los productos de aislamiento térmico más eficientes para cubiertas planas, con un λ_D de 0.023W/mK.
- Compatible con los sistemas de impermeabilización sintética y asfáltica en cubiertas convencionales
- Compatible con la mayoría de los sistemas de cubiertas verdes.
- Facilidad de manipulación y puesta en obra.
- Amplia gama de espesores disponibles
- Paneles rígidos con un valor de resistencia a la compresión mínimo de 175kPa.
- Facilidad de manipulación e instalación.
- Productos con certificado FM Approvals.
- Producto con una cantidad mínima de materia prima reciclada, en peso, del 6% (Según Declaración Ambiental del Producto).

INSTALACIÓN Y FIJACIONES

- El producto no debe almacenarse en la intemperie.
- Antes de la instalación, comprobar y asegurar que el producto aislante está completamente seco.
- Instalar el material aislante bajo unas condiciones meteorológicas que no afecten negativamente al producto ni a la instalación.

THERMAZONE ALU

Aislamiento térmico de PIR para cubiertas metálicas

- En el transcurso de la obra, instalar solo la cantidad de aislamiento que pueda ser protegido por el sistema de impermeabilización a lo largo del día. El material aislante debe cubrirse progresivamente con la membrana de impermeabilización y nunca quedar expuesto al final del día.
- Las planchas deben quedar sujetas a la estructura metálica mediante fijaciones adecuadas que se colocarán en las esquinas de la plancha a una distancia mínima de 100 mm y máxima de 250 mm del perímetro, según se muestra en las siguientes figuras. Las fijaciones deben asegurar una doble función: la de sujeción frente a las acciones de succión provocadas por el viento y la de estabilizar al conjunto aislante-impermeabilización frente a las variaciones térmicas que pueden producirse en una cubierta de este tipo.
- La plancha debe quedar totalmente sujeta, haciendo coincidir cada fijación con la parte superior de la greca del perfil metálico inferior.
- La instalación y fijación del sistema de cubierta debe realizarse según las recomendaciones de FM Approvals.

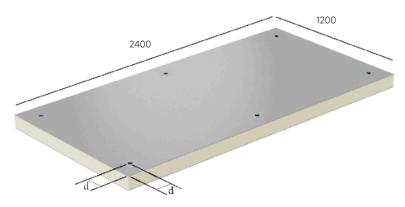


Figura. Planchas 2400 x 1200 mm: 2 fijaciones/m².

 $100 \le d \le 250 \text{ mm}.$

Características		Clase según EN 13165*	Norma de ensayo	Valores	
Coef. conductividad térmica declara	ado (W/m·K)	λ _D , 10°C	EN 12667	0,023	
Resistencia a la compresión (kPa) d _N 30-49 mm d _N 50-160 mm		CS (10/Y)175 CS(10/Y) 200	EN 826	≥ 175 (30-49 mm) ≥200 (50-160 mm)	
Estabilidad dimensional 48h, 70°C,	90 %HR (%)	DS (70,90) 3	EN 1604	∆long, ∆anch. ≤ 2 ∆esp. ≤ 6	
Absorción de agua (%)		WL(T)1	EN 12087	≤ 1	
Espesor (mm)		Т2	EN 823	e < 50 ±2 50 ≤ e ≤ 75 ± 3 e > 70 +5, -2	
Reacción al fuego del producto. Eur	oclase	-	EN 13501-1	Е	
Reacción al fuego del producto en c uso. Euroclase (únicamente para ap cubierta deck)		-	EN 15715	dN 30-120 mm B-s1, d0 dN 121-160 mm B-s2, d0 Montaje normalizado n° 3	
Certificación al fuego <fm approva<="" td=""><td>ıls></td><td>-</td><td>FM 4470</td><td>Clase 1</td></fm>	ıls>	-	FM 4470	Clase 1	

(*) UNE-EN 13165:2013+A2:2017

Ficha técnica del producto

Edición 2 - 30 Jun 2025

THERMAZONE ALU

Aislamiento térmico de PIR para cubiertas metálicas

CERTIFICACIÓN FM APPROVALS

• El panel THERMAZONE MG ha obtenido una clasificación FM Approvals Class 1 (según FM 4470:2012) con un espesor mínimo de 50 mm para cubiertas tipo deck de acero y de 30 mm para cubiertas tipo deck de hormigón, hasta un espesor máximo de 320 mm.

- FM Global acredita y certifica la seguridad ante el fuego con la ayuda de ensayos que simulan incendios realizados a escala real, no solamente del panel aislante sino de la construcción de la cubierta en su totalidad.
- El THERMAZONE MG puede ser utilizado en las construcciones de cubierta de clase 1 descritas en la versión actual del manual de aprobación de FM.
- El THERMAZONE MG ha obtenido la certificación FM Approved con las siguientes membranas impermeabilizantes:

Membrana	Fabricante	Material	Pendiente Cubierta	
EverGuard TPO	BMI	TPO	≤ 2,4°	
EverGuard Extreme TPO	BMI	TPO	≤ 2,4°	

Ver detalles constructivos en la aplicación FM Approval RoofNav.

